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Abstract
We present a semiphenomenological approach to calculating the quasiparticle
spectra of high-temperature superconductors. It is based on a particularly
efficient parametrization of the effective electron–electron interaction afforded
by the density functional theory for superconductors and a tight-binding
linearized-muffin-tin-orbital scheme for solving the corresponding Kohn–
Sham–Bogoliubov–de Gennes equations. We apply this methodology to
YBa2Cu3O7−δ (YBCO) and illustrate its potential by investigating a number of
site- and orbital-specific, but otherwise phenomenological, models of pairing
in quantitative detail. We compare our results for the anisotropy of the
gap function on the Fermi surface with those deduced from photoemission
experiments on single crystals of YBCO. Also, the low-temperature specific
heat and penetration depth are calculated and compared with measurements.
We investigate the doping dependence of the superconducting gap, transition
temperature, Tc, and penetration depth. We present new evidence that the
Van Hove-like scenario is an essential feature of superconductivity in the
cuprate superconductors. Since our description of pairing is phenomenological,
we shed new light on the physical mechanism of pairing only indirectly and
conclude, provisionally, that the dominant pairing interaction operates between
electrons of opposite spins, on nearest-neighbour Cu sites in dx2−y2 orbitals.

1. Introduction

The phenomenon of the high-temperature superconductivity (HTS), discovered over a decade
ago by Bednorz and Müller [1], has stimulated an unprecedented theoretical and experimental
effort directed towards discovery of the pairing mechanism in these systems. Unfortunately,
despite all the progress made, the origin of the attractive force, responsible for the formation
of the Cooper pairs in these complicated materials, is still unknown. The complexity of
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cuprates, both in their normal and superconducting states, is no doubt going to attract interest
for many more years to come. In this paper, instead of speculating on the microscopic nature
of the pairing, we concentrate on reviewing our results for a variety of superconducting
properties of YBCO, calculated on the basis of the quasiparticle spectra obtained within
a semiphenomenological approach, combining first-principles electronic structure with a
phenomenological pairing potential [2–6]. Our approach has been formulated within density
functional theory (DFT) for superconductors [7, 8], and its basic equations are of the
Bogoliubov–de Gennes form. They are obtained from the so-called eight-band model
Hamiltonian [9], by augmenting it with a phenomenological pairing potential. The central
quantity of this approach is an electron–electron interaction kernel K(r1, r

′
1; r2, r

′
2) which,

when attractive, leads to superconductivity. This interaction kernel is parametrized by a
set of interaction constants KRL,R′L′ , with R,R′ and L,L′ referring to the positions and
orbital character, respectively, of the two electrons. These interaction constants KRL,R′L′

are treated as adjustable parameters of the theory, and combined with the pairing amplitude,
the order parameter of the theory, give rise to the phenomenological pairing potential. It is the
consequences of this semiphenomenological approach for superconductivity of HTS materials
that we are concerned with in this paper. If a specific coefficient KRL,R′L′ , with all the others
set equal to zero, can be adjusted to give a good quantitative account of the quasiparticle
spectrum in the superconducting state of a particular superconductor, then we shall conclude,
with appropriate caution, that the attraction operates between electrons in orbitals RL and
R′L′. Thus, indirectly we can shed light on the mechanism of pairing operating in the cuprate
superconductors.

In the remainder of the paper we outline briefly the underlying equations of the density
functional theory for superconductors (DFTS), and introduce the phenomenological pairing
potential, which will be incorporated into the eight-band model Hamiltonian [9], providing
a good quantitative description of the first-principles LDA band structure of YBCO, in the
normal state, within 2 eV of the Fermi energy εF . The local orbitals of the eight-band model
provide the basis for the parametrization of the interaction kernel, and we shall briefly describe
the approximations involved and the possible pairing scenarios that arise as a result of this
parametrization. Since our aim is to study the consequences of this methodology in confronting
experimental evidence, in the remaining sections of the paper we review our results for the
superconducting gap, low-temperature specific heat, penetration depth, and Tc, both at optimal
doping and as a function of doping. We finalize the paper by drawing conclusions from
this work.

2. Density functional theory and Bogoliubov–de Gennes equations

The formal framework of the DFT for superconductors was developed by Oliveira, Gross,
and Kohn [7, 8], in close analogy to the DFT for spin-polarized systems (SP-DFT) [10, 11].
The corresponding Kohn–Sham equations have the form of the Bogoliubov–de Gennes (BdG)
equations [2, 12], which are a set of coupled integral equations(

−1

2
∇2 + V (r)− µ

)
uj (r) +

∫
�(r, r′)vj (r′) d3r ′ = Ejuj (r)

−
(

−1

2
∇2 + V (r)− µ

)
vj (r) +

∫
�∗(r, r′)uj (r′) d3r ′ = Ejvj (r)

(1)

that have to be solved self-consistently with respect to the chemical potential, µ, the one-
electron effective potential, V , the pairing potential, �, and the pairing amplitude χ , the
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order parameter of the theory. Note that within the present formulation of DFTS only the
singlet pairing is considered, i.e., only electrons of opposite spins and momenta (k↑,−k↓) are
allowed to pair.

The one-electron effective potential V (assumed to be independent of spin) is defined by
the usual relation

V (r) = Vext(r) +
∫

n(r′)
|r − r′| d3r ′ +

δ�xc [n, χ ]

δn(r)
(2)

and the pairing potential

�(r, r′) = δ�xc [n, χ ]

δχ(r, r′)
(3)

is a functional derivative of the XC free-energy functional with respect to the pairing amplitude
χ . Note that in the DFTS the exchange–correlation (XC) free energy is a functional of the
electron charge density n and pairing amplitude χ . If� was equal to zero, the BdG equations
would split into two separate equations, one for electrons and one for holes.

Although, like in any DFT, the solutions of the BdG equations, namely the amplitudes uj
and vj , and the corresponding eigenvaluesEj , are only auxiliary quantities whose sole purpose
is to provide representation for calculating the electron charge density n:

n(r) = 2
∑
j

[
1 − f (Ej )

] ∣∣vj (r)∣∣2
+ f (Ej )

∣∣uj (r)∣∣2
(4)

and pairing amplitude χ :

χ(r, r′) =
∑
j

[
1 − f (Ej )

]
uj (r)v

∗
j (r

′)− f (Ej )uj (r′)v∗
j (r) (5)

we shall interpret them provisionally as elementary excitations of the superconducting state
(i.e. the quasiparticle spectrum of the superconducting state), and regard uj as the amplitude
for such an elementary excitation being a quasiparticle and vj as being the amplitude of a
quasihole. Here f (E) ≡ [1 + exp(E/kBT )]−1 is the Fermi function, and the normalization of
the eigenfunctions is such that∫ ∣∣uj (r)∣∣2

d3r +
∫ ∣∣vj (r)∣∣2

d3r = 1. (6)

The effective quasiparticle spectrum Eν(k) of the BdG equation, with ν being the band
index and k a wave vector in the first Brillouin zone (BZ), may be thought of as the normal-
state single-electron spectrum εν(k), doubled up by folding around the chemical potential µ,
and subsequently split by the pairing potential �. Therefore, the solutions come in pairs: a
set of positive eigenvalues, E+

ν (k), and a set of negative eigenvalues, E−
ν (k), that are exactly

symmetrical with each other about the chemical potential. Only the positive eigenvalues are
physically meaningful but, for the sake of calculations, one can use the negative eigenvalues
and the corresponding eigenvectors and interpret the results without loss of generality.

Based on the BdG quasiparticle spectrum, and following Suvasini et al [12], we can define
the superconducting gap as

2�ν(kF) ≡ ∣∣E+
ν (kF)− E−

ν (kF)
∣∣ = 2

∣∣E+
ν (kF)

∣∣
where kF is a vector corresponding to a point on the νth sheet of a pseudo-Fermi surface
defined by ∑

L

∣∣∣ukF
L,ν

∣∣∣2
=

∑
L

∣∣∣vkF
L,ν

∣∣∣2

i.e. where |χk| = 1/2.
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Using the self-consistent solutions of the BdG equations, in this paper we calculate a
variety of superconducting properties of the cuprate superconductors, and compare them with
experiments in section 5.

The pairing potential is electronic in nature, because it arises from electron correlations.
It is static (no time or energy dependence). Therefore, within the present formulation no
retardation effects are possible. Dynamic effects can only be treated in an average way, to the
extent that it is possible to represent them in terms of an electronic interaction. To consider
the interaction with phonons one needs a two-density theory, where both electrons and ions
are treated on the same footing [13]. Since there still exists no usable form of�xc it is helpful
to rewrite the differential equation for the pairing potential in an equivalent integral form:

�(r1, r
′
1) =

∫ ∫
K(r1, r

′
1; r2, r

′
2)χ(r2, r

′
2) d3r2 d3r ′2 (7)

with

K(r1, r
′
1; r2, r

′
2 [n, χ ]) ≡ δ2�xc [n, χ ]

δχ(r1, r
′
1) δχ(r2, r

′
2)

(8)

being the pair interaction kernel. In the most general case, K is also a functional of n and
χ . However, since the mechanism of pairing is not known there is no way of evaluating this
pair interaction kernel from first principles. Therefore, in order to make the theory useful for
the high-Tc cuprates, we shall have to introduce some approximations. Fortunately, the DFT
allows for a very efficient parametrization of the kernel in terms of the local orbitals of the
theory and treating the resulting orbital and site-dependent quantities as adjustable parameters,
whose values can be determined by fitting to the experimental quantities.

With respect to the formula for the pairing potential it can be further simplified in a manner
similar to the corresponding relation in the SP-DFT between the exchange potential and the
magnetization via the exchange interaction kernel I :

V↑(r1)− V↓(r1) =
∫
I (r1, r2)m(r2) d3r2 ≈ I (r1)m(r1)

which by implementing a local approximation can be transformed into a simple Stoner relation.
And this is what we shall implement also in the study for the superconducting state.

3. Tight-binding representation

To implement the methodology described above and facilitate the said parametrization of
the pair interaction kernel, we expand the single-particle wave function in terms of the local
tight-binding muffin-tin orbitals φL(r − R):[

uν(r)

vν(r)

]
=

∑
RL

ϕL(r − R)

[
uRL,ν
vRL,ν

]
. (9)

As before, R labels the site (R) and L the shape (e.g. atom and angular momentum type) of
the orbital. Consequently, in this local tight-binding representation the BdG equations take
the following matrix form:

∑
RL

[
HR′L′,RL − (µ + Eν)OR′L′,RL �R′L′,RL

�∗
RL,R′L′ −HR′L′,RL + (µ− Eν)OR′L′,RL

] [
uRL,ν
vRL,ν

]
=

[
0
0

]

(10)
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with the matrix elements of the Hamiltonian and the overlap matrix given by the integrals over
the unit cell

HR′L′,RL ≡
∫
ϕ∗
L′(r − R′)

[
−1

2
∇2 + V (r)

]
ϕL(r − R) d3r

OR′L′,RL ≡
∫
ϕ∗
L′(r − R′)ϕL(r − R) d3r

and the integral equation for the pairing potential acquiring the following form:

�R1L1,R
′
1L

′
1
=

∑
R2L2

∑
R′

2L
′
2

KR1L1,R
′
1L

′
1;R2L2,R

′
2L

′
2
χR2L2,R

′
2L

′
2
. (11)

To make the above relation between the pairing potential and pairing amplitude useful, we
have to evaluate the unknown coefficients, KR1L1,R

′
1L

′
1;R2L2,R

′
2L

′
2
, of the pair interaction kernel.

This four-point function describes the scattering of an (↑, ↓) pair of electrons in orbitals R2L2

and R′
2L

′
2 into an (↑, ↓) pair in orbitals R1L1 and R′

1L
′
1 (and similarly for the (↓, ↑) pair). To

make progress, first we have to abandon hope of evaluating K from first principles, and drop
its functional dependence on n and χ . Then we assume that the kernel is local:

KR1L1,R
′
1L

′
1;R2L2,R

′
2L

′
2
= δR1R2δL1L2δR′

1R
′
2
δL′

1L
′
2
KR1L1,R

′
1L

′
1

(12)

meaning that K vanishes unless all spin-up electrons are in the same orbital and similarly for
the spin-down electrons. This local representation of the interaction kernel results in a simple,
Stoner-like, relation between the pairing potential and pairing amplitude

�RL,R′L′ = KRL,R′L′χRL,R′L′ . (13)

It states that in the local orbital representation each matrix element of the pairing potential is
proportional to the corresponding matrix element of the pairing amplitude, and is independent
of all the other components. Of course, the matrix elements of the pair interaction kernel are
still unknown. At this point, therefore, we make a further approximation, namely we shall
treat these coefficients as adjustable parameters of the theory. The hope of this strategy is that
a small number of these coefficients will suffice to produce agreement with a large number of
experimental data. In fact in most of our studies we pick just one of these coefficients to be non-
zero and fix its value by requiring that the calculated Tc agrees with the experimental evidence.
Then given the first-principles aspect of our theory (in relation to the normal-state electronic
structure), all calculated superconducting properties, other than Tc, will be predictions of the
theory and will be calculated without additional adjustable parameters. This strategy gives rise
to a variety of pairing scenarios [3] where one can choose various orbitals to assign electrons
to, determine the strength of the coupling parameter K by fitting to the experimental Tc, and
study the consequences regarding a large number of superconducting properties. The aim is
to identify the pairing scenario that agrees with most properties and experiments.

The final point that we would like to make before leaving this section is that in the
actual calculations, we shall replace the Hamiltonian matrix, appearing in the above TB-BdG
equations, by the eight-band model derived from the full first-principles LDA Hamiltonian [9].
Moreover, we shall not update the tight-binding parameters of this model during the self-
consistency cycles, which will make our methodology a weak-coupling theory. At every
iteration we shall only update the chemical potential, the pairing potential, and the pairing
amplitude.

4. Electronic structure of YBa2Cu3O7 and eight-band model

Before introducing the eight-band model for YBCO, in figure 1 we summarize the full
electronic and structural information on the optimally doped compound. As can be seen
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Figure 1. (a) The crystal structure of YBa2Cu3O7. Y, in the middle of the orthorhombic unit cell,
separates the two copper–oxygen planes. The copper–oxygen chains run along the edges of the
unit cell. Ba lies between the planes and the chains. (b) The electronic structure of YBa2Cu3O7
between the k‖-points (0, 0), (π/a, 0), (π/a, π/b), (0, π/b), (0, 0), (π/a, π/b) in the kz = 0 plane
of the orthorhombic Brillouin zone as calculated by the full-potential LMTO method and using the
local density functional theory. (c) Intersection of the Fermi surface of YBa2Cu3O7 with the kz = 0
plane of the orthorhombic Brillouin zone as calculated by the full-potential LMTO method using
the local density functional theory. The coordinates are for ): (0, 0); X: (π/a, 0); S: (π/a, π/b);
and Y: (0, π/b).

in figure 1(a), the optimally doped YBCO crystallizes in the orthorhombic structure whose
most prominent feature is a set of CuO2 planes which are dimpled, meaning that the oxygens
occupy slightly out-of-plane positions. The CuO2 planes are arranged in pairs (bilayer), as
mirror reflections of each other with respect to the yttrium [001] plane. The CuO2 planes are
a generic feature of the high-Tc cuprates and, as such, are of particular interest for the present
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study. Another important feature of YBCO is a CuO chain which, however, is not a generic
feature of HTSs. All these structural features are reflected in the presented LDA band structure
(figure 1(b)), giving rise to the Fermi surface displayed in figure 1(c).

The band structure features the anti-bonding (of CuO2 planes) pdσ bands, with a total
width of about 10 eV, and a chain-related band, crossing the Fermi level, here marked by energy
zero. The strongly hybridized anti-bonding pdσ band has a maximum at the S point and a
minimum at the) point. It exhibits a set of bifurcated saddle points near the X and Y symmetry
points. These bifurcated saddle points give rise to a logarithmic Van Hove singularity (VHS)
in the density of states. As can be seen in figure 1(c) for the basal plane, the Fermi surface of
YBCO consists of four sheets. The main cross-sections of the Fermi surface, marked ‘a’ and
‘b’, originate from the CuO2 planes, while the sheet marked ‘c’ is chain-related. The smallest
element of the Fermi surface, situated around the S point, the so-called stick, is due to BaO
layers. This FS has been verified experimentally, except that the saddle points observed by
angle-resolved photoemission spectroscopy (ARPES) appear to be extended, while the LDA
calculations give the bifurcated saddle points [14].

This complex band structure of figure 1(b) was used by Andersen et al to derive the so-
called eight-band model Hamiltonian [9]. The motivation for deriving the eight-band model
was to represent faithfully, with a minimal set of orbitals, generic features of the electronic
structure of cuprates, i.e., those originating from CuO2 planes. The bands derived from the
non-generic structural elements, separating the CuO2 layers, such as the chain and BaO layers,
have been removed. As a consequence, the eight-band model is two dimensional. It features
eight orthonormal local orbitals ϕL (L = 1 to 8) per CuO2 plane (layer). The first four of
these are the σ -orbitals: O2 px , Cu dx2−y2 , O3 py , and Cu s. The others are the π -orbitals:
O2 pz, Cu dxz, O3 pz, and Cu dyz. The Cu s orbital is the most diffuse and provides most of the
hopping perpendicular to the layer and, hence, is mostly responsible for the splitting of the two
conduction bands in a bilayered material into even and odd bands (a bilayer has 16 orbitals)
(figure 2). This eight-band, orthonormal, nearest-neighbour, tight-binding Hamiltonian

H k
L′L = δL′LεL +

∑
T

t0L′,TL exp(ik · T ) with Ok
L′L = δL′L

describes accurately the LDA bands within ±1 eV around the Fermi level. The hopping
integrals, t0L′,TL, and site energies, εL, have been determined by fitting to the self-consistent
LDA calculation.

The advantage of using the eight-band model, over e.g. the one- or three-band models, lies
in the feature that we are dealing with physical orbitals to which we can assign electrons. In
this way we can study a variety of pairing scenarios that can we hope provide us with further
insights into a possible origin of the pairing mechanism.

In figure 2 we summarize the electronic structure that the eight-band model gives rise to.
Remember that the eight-band model was derived to represent accurately the generic features
of the electronic structure of high-Tc materials, i.e., those that originate from CuO2 planes.
Indeed the band structure along the main crystallographic directions in the 2D BZ shows the
two pdσ bands which in the language of the eight-band model are referred to as the odd
and even bands (see figure 2(a)). The odd bands show, very close to the Fermi level, the
characteristic bifurcated saddle points at X and Y symmetry points, which give rise to the VHS
in the density of states (DOS) (figure 2(b)). Note that the VHS is only about 2 meV below the
Fermi level, and that due to slight orthorhombicity of the crystal structure, there are two VHS
peaks, separated by about 8 meV. The jump in the DOS at about 14 meV reflects the electron
pockets at the X and Y points (since the energy at the X and Y points is lower; therefore the
DOS jumps). The FS of the eight-band model, shown in figure 2(c), features the two main
sheets, even and odd, originating from the corresponding even and odd bands, crossing the
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Figure 2. (a) The energy bands of the eight-band model of a CuO2 bilayer of YBa2Cu3O7 along
the symmetry lines in the two-dimensional Brillouin zone. The dashed curves refer to the eight odd
(anti-bonding between the layers) bands and the dotted curves to the eight even (bonding) bands.
(b) The normal-state density of states in the neighbourhood of the Fermi level for the eight odd
(dashed curve) and eight even (chain curve) plane bands of YBa2Cu3O7, as well as their sum (full
curve). The two logarithmic Van Hove singularities are due to the saddle points of the odd plane
band near respectively X and Y. (c) The odd (chain curve) and even (full curve) sheets of the Fermi
surface of a CuO2 bilayer of YBa2Cu3O7 in the irreducible part of the two-dimensional Brillouin
zone. It is this part of the electronic structure which the eight-band model is designed to reproduce
accurately.
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Fermi level. All the evidence presented in this figure is very convincing as regards the assertion
that the eight-band model does represent well this part of the electronic structure of the high-Tc
cuprates that matters for superconductivity.

5. Results

5.1. Pairing scenarios and the corresponding superconducting gaps

As mentioned before, our methodology enables a study of various pairing scenarios where
electrons in different orbitals and/or sites are coupled by an attractive interaction. In figure 3,
we have depicted five different pairing scenarios of s- and d-type symmetries. The convention

Pairing interactions: Tc = 92 K

Local ss, Kss(0) = 14.3 eV

extended s wave

Local dd, Kdd(0) = 1.23 eV

isotropic s wave

Local sd, Ksd(0) = 5.25 eV

d wave

Non-local sd, Ksd(a) = 2.32 eV

extended s wave

Non-local dd, Kdd(a) = 0.68 eV

d wave

Cu

Cu

Cu

Cu

Cu

Cu

Cu

s

dx2−y2

s

dx2−y2 dx2−y2 dx2−y2

dx2−y2

s

Figure 3. Schematic diagrams depicting scenarios studied for various pairing interactions,
operating between Cu s and Cu dx2−y2 orbitals in the CuO2 layers. Details are given in the
text.



8634 Z Szotek et al

0

5

10

15

20

-2 -1 0 1 2

 (
0)

 [
m

eV
] 

   
   

   
   

   
   

   
   

   
   

∆ 
   

   
   

   
   

   
   

   
   

   
   

   

Fermi surface length                    

On-site Cu s - Cu s scenario, (a)       

0

5

10

15

20

-2 -1 0 1 2

 (
0)

 [
m

eV
] 

   
   

   
   

   
   

   
   

   
   

∆ 
   

   
   

   
   

   
   

   
   

   
   

   

Fermi surface length                    

On-site Cu d - Cu d scenario, (b)       

Figure 4. The calculated anisotropy of (half ) the gap, for the on-site Cu s–Cu s (a), the on-site
Cu dx2−y2 –Cu dx2−y2 (b), and the on-site Cu s–Cu dx2−y2 (c), the intra-layer nearest-neighbour
Cu s–Cu dx2−y2 (d), and the intra-layer nearest-neighbour Cu dx2−y2 –Cu dx2−y2 (e) scenarios, as
a function of the Fermi-surface length measured from the crossing with the )S line and in units of
the inverse lattice constant, for the odd (crosses) and even (diamonds) sheets of the Fermi surface.

of these schematic diagrams is that they explicitly indicate the sites and orbitals that the
members of the Cooper pair occupy when they experience an attractive interaction, whose
strength K is chosen such that the calculated Tc coincides with the experimentally observed
Tc of the optimally doped compound. In the case of YBCO, it is 92 K. Note that the calculated
Tc is the lowest temperature for which the pairing amplitude converges to zero.

Among the s-type scenarios two are local and one is non-local. Note that even the local
scenarios can lead to a very anisotropic gap as a function of the FS length (see figure 4(a)).
The reason for this is that the k-dependence of the gap is determined by both the underlying
electronic structure and the k-dependence of the pairing potential, i.e., it is a combined effect
of the two. So, even for a local potential the gap can be very anisotropic if the character of the
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Figure 4. (Continued)
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Figure 5. A comparison of the calculated gap for the intra-layer nearest-neighbour Cu dx2−y2 –
Cu dx2−y2 , scenario withKdd(a) = 0.68 eV for the even (e) and odd (o) sheets of the Fermi surface,
with the experimental data deduced by Schabel et al [15], from photoemission measurements on
their sample XIII (a), sample XV (b), sample XVII (c), and sample XIII 2 (d).

wave-function coefficients varies significantly across the FS. Thus the local scenario, where
both members of the Cooper pair reside in the Cu s orbital, belonging to the same Cu site, leads
to a very anisotropic gap which however is of the extended s type, with Kss(0) = 14.3 eV,
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Figure 5. (Continued)

and its large variation across the Fermi surface reflects strong hybridization of the Cu s with
the pdσ anti-bonding band. On the other hand, the local scenario where the members of the
Cooper pair occupy Cu dx2−y2 orbitals on the same site, withKdd(0) = 1.23 eV, leads to a very
isotropic s-wave gap, very much like the one for the conventional BCS superconductor. The
reason for this is that the character of the Cu dx2−y2 orbital remains fairly constant across the



8638 Z Szotek et al

FS, and there is no contribution from the pairing potential. The last s-type scenario in figure 3
is an example of another case of extended s symmetry (see figure 4(d)). This time, however, it
is a combined effect of the variation of the Cu s character across the FS and the lattice Fourier
transform of the pairing potential, since the respective orbitals, s and dx2−y2 , belong to the
nearest-neighbour copper sites, and the coupling parameter isKsd(a) = 2.32 eV, with a being
the nearest-neighbour separation.

The two d-wave scenarios that we have studied in considerable detail are shown by the
two schematic diagrams at the bottom of figure 3. The one on the left is a local scenario, i.e. the
electrons of opposite spins and momenta occupy respectively s and dx2−y2 orbitals on the same
Cu site, with Ksd(0) = 5.25 eV. The other d-wave scenario, on the bottom right, is non-local
with Kdd(0) = 0.68 eV and the members of the Cooper pair occupying dx2−y2 orbitals on the
nearest-neighbour Cu sites (the intra-layer nearest-neighbour Cu dx2−y2 –Cu dx2−y2 scenario).
One can see that although both lead to a d-wave gap, with well defined cusps at the zero FS
length (see figures 4(c) and 4(e)), the respective shapes are slightly different, and in particular
the values of the coupling constantsKdd(a) andKsd(0) are very different, by nearly an order of
magnitude. As mentioned before, the respective gap anisotropies are a combined effect of the
underlying electronic structure, represented by the eight-band model, and the lattice Fourier
transform of the pairing potential. In the case of the non-local scenario it is nearly entirely the
latter that determines the gap anisotropy, since the Cu dx2−y2 character remains fairly constant
across the FS. In the case of the local scenario the k-dependence of the pairing potential does
not contribute, and neither does Cu dx2−y2 , whose character hardly changes across the FS. So,
the very anisotropic gap is due to the peculiar behaviour of Cu s, and its hybridization with the
pdσ Cu–O bands crossing the Fermi level. Since the coupling constant of the local scenario
is nearly ten times larger than the one for the non-local scenario, then it is hard to believe that
the local scenario would be the one for YBCO.

The general point to make regarding pairing scenarios is that although Tc for all these
scenarios is 92 K, the values of the corresponding coupling parameters, measuring the strength
of the attractive interaction experienced by the members of the Cooper pair, vary rather
substantially. Therefore, if one was to classify these scenarios with respect to the probability of
their occurrence, as defined by the size of the interaction constantK , then the Cu s–Cu s local
scenario would be least likely, merely on account of the huge coupling constant it requires for
the superconductivity to occur. Hence, it is perhaps just a curiosity rather than a real possibility.
Since, however, YBCO is reported to be a d-wave superconductor, we need not worry about
this. By the same token, the non-local d-wave scenario, with members of the Cooper pair
occupying the nearest-neighbour Cu dx2−y2 orbitals, should be the most favourable scenario.
To show that this is indeed the case, in figure 5 we compare the superconducting gap for this
d-wave scenario with the ARPES measurements by Schabel et al [15]. We plot there both
even and odd superconducting gaps as functions of the characteristic k-space dependence of the
d-wave order parameter, |cos kx − cos ky|/2. Note that both even and odd gaps show, as they
should, convincing linear dependence. Although our calculations correspond to a Tc of 92 K,
we compare against the measurements by Schabel et al for all four samples corresponding to
different Tcs. And the agreement with our results is fairly satisfactory for all the samples. The
error bars are quite large, and the lines through them serve here merely as a guide for the eyes.
Nevertheless, the near quantitative agreement with the results for sample XVII can be taken as
evidence that the relation between the attractive force, represented by the coupling coefficient
Kdd(a), and the gap in the quasiparticle spectrum is correctly described by our BdG equations
with the eight-band model Hamiltonian. Considering that we did not fit to any feature of the
measured gap, but only to obtain Tc = 92 K, the agreement is truly amazing. The BCS ratios
for all the samples are of the order of 5 to about 8. Our calculated value of 4.8 agrees quite well
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with the value of 5.4 for the sample XVII. Regarding the local d-wave scenario we conclude,
on the basis of figures 4(c) and 4(e), that its agreement with the experiments by Schabel et al
will not be as satisfactory.

5.2. Density of states and specific heat

It is well known that d-wave symmetry of the gap implies linear dependence of the density
of states around the energy zero, relative to the chemical potential. Although this linearity
is a foregone conclusion, the slope is not, and can be verified experimentally e.g. by
low-temperature specific heat measurements. And this could differentiate between various
scenarios and help in identifying the correct one, shedding light, indirectly, on a possible
pairing mechanism. As can be seen in figure 6, the two d-wave scenarios give rise to different
slopes of the DOS and similarly lead to different slopes for the low-temperature specific heat
(figure 7). The latter has been calculated according to the formula for independent fermions

CSv (T ) =
∑
kν

β

2T

[
Ek
ν + β

∂Ek
ν

∂β

]
Ek
ν

cosh2(βEk
ν /2)

(14)

with β = 1/kBT , where kB is the Boltzmann constant. Note that the local scenario gives
rise to a substantially smaller slope, and accordingly smaller prefactor of the power-law
behaviour of the specific heat which is a quadratic function of T/Tc. Specifically, for the non-
local d-wave scenario we have calculated the low-temperature electronic specific heat in the
superconducting state to follow the relationCSv (T ) = 0.93(T /Tc)2, while for the local scenario,
CSv (T ) = 0.63(T /Tc)2. What these results tell us is that although the two scenarios have the
same Tcs their respective quasiparticle spectra are very different, i.e., the k-dependences of
the respective superconducting gap functions, �k(T ), around their nodes, are very different,
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Figure 6. A comparison of the linear behaviour of the total quasiparticle density of states in
the vicinity of the chemical potential for two different ‘d-wave’ pairing scenarios: the intra-layer
nearest-neighbour Cu dx2−y2 –Cu dx2−y2 scenario with Kdd(a) = 0.68 eV and the on-site Cu s–
Cu dx2−y2 scenario with Ksd(0) = 5.25 eV.
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Figure 7. A comparison of the calculated low-temperature electronic specific heat in the
superconducting state for two different d-wave scenarios featuring the intra-layer nearest-neighbour
Cu dx2−y2 –Cu dx2−y2 coupling with Kdd(a) = 0.68 eV (squares) and the on-site Cu s–Cu dx2−y2

coupling with Ksd(0) = 5.25 eV (triangles). The dotted curve marks the experimental result of
Moler et al [16].

and the ways the gaps rise from their nodes in k-space are different. The electronic specific
heat is only a small fraction of the total specific heat, and it is extremely difficult to extract
from measurements. However, Moler et al [16] managed to extract from their experiments
the slope coefficient of the low-temperature superconducting electronic specific heat, and it
turned out to be in excellent agreement with our result for the non-local d-wave scenario [3],
namely they found CSv (T )

exp = 0.95(T /Tc)2. Since the linear dependence of the DOS of the
d-wave superconductor translates to a power-law (T 2-) dependence of the low-temperature
electronic specific heat, this power law is a foregone conclusion, but the slope of the specific
heat is a quantitative prediction of the calculation, and it is very satisfying that our result for
the non-local d-wave scenario agrees so well with the experiment by Moler et al [16].

5.3. Penetration depth and superfluid density

Unlike the specific heat, the penetration depth, λ, has only an electronic contribution and
seems to be relatively easy to measure. Also, it holds similar information to the specific
heat. Penetration depth at low temperatures is a very important quantity to calculate since
it is a direct measure of the superfluid density and hence can hold an important clue to the
mechanism of pairing. It is only at low temperatures that the superfluid density is unaffected
by a possible presence of low-lying excitations that are not associated with the nodes in the
superconducting gap.

Following the semiclassical approach of Chandrasekhar and Einzel [17], the superfluid
density tensor has the form

T̄ = T − (T · q)(q · T )
q · T · q

(15)

where q is a unit vector in the direction of the current flow, and the second term on the right-
hand side is due to the back flow. Furthermore, T is the difference between the diamagnetic
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and paramagnetic contributions:

T = T D − T P (16)

with the diamagnetic (T D) and paramagnetic (T P ) contributions being

T D
αβ = e2

4π3c

∫
d3k

(
−∂nk

∂εk

)
(vαkv

β

k ) (17)

and

T P
αβ = e2

4π3c

∫
d3k

(
−∂f (Ek)

∂Ek

)
(vαkv

β

k ). (18)

In these formulae the indices α and β stand for x-, y-, and z-axes, e is the electric charge, c
is the velocity of light, εk and Ek are respectively the quasiparticle dispersion relations in the
normal and superconducting states,

vαk = 1

h̄

∂εk

∂kα

is the quasiparticle velocity in the α-direction, f is the usual Fermi function, and nk is the
occupancy of the single-particle state k in the superconducting state:

nk = u2
kf (Ek) + v2

k(1 − f (Ek))

where the amplitudes uk and vk are respectively the quasiparticle and quasihole solutions of
the Bogoliubov–de Gennes equations. Note that in the above formulae the band index has
been suppressed.

Using the conventional labels a, b, c for the symmetry axes of the layered superconducting
cuprates, in the CuO2 plane, the penetration depths λa(T ) and λb(T ) may be obtained from

λα(T ) =
[

c

4π(T D
αα − T P

αα)

]1/2∣∣∣∣
α=a,b

. (19)

In figure 8 we show our results, obtained with the above formula, for the relative penetration
depth [5], as a function of temperature, for the low-temperature region. The results are for both
a- and b-axes (indicating the direction in which currents flow), and both d-wave scenarios,
calculated as the difference �λ(T ) = λ(T ) − λ(0). Our calculations are compared with the
measurement of Carrington et al [18]. The linear dependence of�λ(T ) on temperature is due
to nodes in the superconducting gap but slopes reflect the quasiparticle spectra, and as before
should be a decisive factor for the choice of the most likely scenario for YBCO.

Note that in the excluded-volume technique, used by Carrington et al, the measured
curves start at 1.4 K, since this is the lowest temperature that can be resolved. Moreover,
the experiment measures only the relative quantity �λ(T ). What is measured is the effective
shielding volume of the sample penetrated by the magnetic field. Therefore, no information
on the absolute λ(0) can be obtained from this technique. One thing to observe here is that the
calculated relative penetration depth shows no anisotropy between a- and b-quantities. In this
respect the experimental curves also hardly differ from one another. Although all curves are
convincing straight lines, their slopes are substantially different, and it looks like the favoured
d-wave scenario is not as good as the local scenario. This, however, seems to be due to the fact
that in the eight-band model we only have two FS sheets (figure 2(c)), while for the penetration
depth at T = 0 K the whole FS is of importance. Thus our quantities are underestimated,
and due to the lack of the chain FS sheet our λ(0)s for the a- and b-directions are very much
the same, namely λa(0) = 1883 Å and λb(0) = 1839 Å. That the chain matters is supported
by the measurement of Basov et al [19] who, using the far-infrared (FIR) spectroscopy, got
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Figure 8. The temperature dependence of the relative penetration depth,�λa (b)(T ) = λa (b)(T )−
λa (b)(0) (Å), as calculated on the basis of the eight-band model for the intra-layer nearest-neighbour
Cu dx2−y2 –Cu dx2−y2 scenario (dd) and the on-site Cu s–Cu dx2−y2 scenario (sd). Full curves
correspond to the a-axis and the dotted curves to the b-axis. Here the results obtained by Carrington
et al [18] are plotted for comparison.

widely different values for the two quantities, indicating that superconductivity extends also
to the chains. From the Basov et al measurement, λa(0) = 1600 Å is substantially larger than
λb(0) = 1200 Å, implying that the chain seems to enhance the superfluid density.

To interpret the experimental data of Carrington et al [18] in terms of the superfluid density
one needs λ(0) both for a- and b-directions. Since, as mentioned before, Carrington et al could
not measure the absolute quantities, the values of Basov et al have been used. As one can
see in figure 9, the experimental curves for both a- and b-directions, although linear, are very
different from one another, showing large anisotropy between them. Remembering that the
relative penetration depth has been very much the same for both directions, one can conclude
that the observed anisotropy is entirely due to the anisotropy betweenλa(0) andλb(0). Contrary
to the experimental result, the calculated curves show no noticeable difference between the
two directions and again the Cu s–Cu dx2−y2 local scenario agrees better with the experiment
(figure 9(b)) than the other d-wave scenario (see figure 9(a)). As mentioned before, the reason
for this is that our calculation for λ(0) gives very much the same values for the two directions,
which is due to the lack of the chain in the eight-band model. This is clearly demonstrated
in figure 10, where we compare our calculation for the non-local scenario of the superfluid
density with the measurement by Carrington et al, but this time for λa(0) and λb(0) we have
used the results of Basov et al, while for the other temperatures the calculated λa(T ) and λb(T )
have been used. One can see that, similarly to the case for the experimental curves, we now
observe a large anisotropy between the two different directions. This is then a demonstration
that the eight-band model is not sufficient for the penetration depth calculation, and that the
chain contributes to the superfluid density quite substantially.

In this way, we have exhausted reviewing our results for the optimally doped compound.
Since our results compared rather favourably with experiments, in the remaining part of the
results section we shall concentrate on the calculations for different doping levels.
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Figure 9. (a) The temperature dependence of (λa (b)(0)/λa (b)(T ))2, the calculated superfluid
density, for the intra-layer nearest-neighbour Cu dx2−y2 –Cu dx2−y2 scenario, in comparison with
the results of Carrington et al [18] (‘Inpl.’ is standing for ‘In-plane’). In the theoretical results,
triangles correspond to the a-axis and the diamonds to the b-axis. (b) The temperature dependence
of the calculated superfluid density, (λa (b)(0)/λa (b)(T ))2, for the on-site Cu s–Cu dx2−y2 scenario,
in comparison with the results of Carrington et al [18] (‘Ons.’ is standing for ‘On-site’). In the
theoretical results, triangles correspond to the a-axis and the diamonds to the b-axis.
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Figure 10. The temperature dependence of the calculated superfluid density, (λa (b)(0)/λa (b)(T ))2,
for the intra-layer nearest-neighbour Cu dx2−y2 –Cu dx2−y2 scenario, with λa (b)(0) taken from the
measurement of Basov et al [19]. For comparison, the relevant experimental data of Carrington
et al [18] are also displayed. In the theoretical results, the diamonds correspond to the a-axis and
the triangles correspond to the b-axis.

5.4. Doping dependence of Tc

Assuming that neither the attractive interaction, in terms of the coupling coefficient KLL′ ,
nor the tight-binding parameters of the eight-band model change much with doping, we have
studied Tc as a function of doping.

Different levels of doping have been accomplished by changing the chemical potential in
the BdG equations, but the tight-binding parameters of the eight-band model and the coupling
constantK have been kept at the values derived for the optimally doped YBCO with Tc = 92 K.
Our results for two different pairing scenarios, namely the isotropic s wave and the favourable,
non-local d wave, are shown in figure 11(a). In figure 11(b) we show the experimental universal
curve of Tc versus doping, for a large number of high-Tc superconductors [14]. Note that the
experimental points of figure 11(b), corresponding to YBCO (123 compound), have also been
plotted in figure 11(a) for comparison. What is seen here is that Tc rises and then falls as one
moves from the overdoped to the underdoped region, and the maximum is at the optimally
doped compound. The calculated curves reflect the rise and fall of Tc as one moves from below
to above the VHS peak in the density of states, thus indicating the importance of the VHS for
the high-Tc superconductivity. According to the Van Hove scenario [14], a VHS could enhance
any weak-coupling interaction, leading to large values of Tc.

When comparing our calculations with the experimental data, one can see that both
scenarios can reproduce very well the observed rise and fall of Tc with doping. However,
what is rather amazing is that the width of the non-local scenario curve at half-maximum
compares very favourably with that of the universal curve, namely 0.14 holes/layer versus
0.15 holes/layer. The observed asymmetry of the theoretical curves is due to the bifurcated
saddle points. In fact, one can also see some asymmetry in the experimental points for YBCO
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Figure 11. (a) Tc , normalized to the value at optimal doping, Tc,max , versus hole concentration
for the CuO2 bilayer of YBa2Cu3O7. The dotted curve corresponds to the intra-layer nearest-
neighbour Cu dx2−y2 –Cu dx2−y2 scenario (d wave), while the dash–dotted curve represents the
on-site Cu dx2−y2 –Cu dx2−y2 scenario (s wave). The squares are the experimental points for
YBa2Cu3O7, extracted from (b), the universal curve of Tc versus hole concentration [14].

(figure 11(a)). The fast fall of the theoretical curve on the overdoped side is due to the loss
of the electron pockets at the X and Y points when moving the chemical potential down, well
below the VHS peaks. By moving the chemical potential down below the Fermi level, the FS
recedes from the d-rich regions of space.

5.5. Tc versus 1/λ2(0)

As can be seen in figure 12, for the non-local d-wave scenario and both a- and b-axes, 1/λ2(0)
also shows a rise and fall as a function of doping. Here, however, unlike in the case of Tc versus
doping, the maximum is not at the optimal doping, for reasons discussed when we presented
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Figure 12. The calculated dependence of 1/λ(0)2 (in Å−2) on the deviation of the number of
holes from that at optimal doping for the CuO2 bilayer of YBa2Cu3O7 for the intra-layer nearest-
neighbour Cu dx2−y2 –Cu dx2−y2 scenario. The triangles correspond to the a-axis and the diamonds
to the b-axis.

the penetration depth results at optimal doping. Nevertheless, one can try to extract from Tc
versus doping, together with 1/λ2(0) versus doping, the Tc versus 1/λ2(0) dependence, and
this is shown in figure 13, for both a- and b-axes and the favourable d-wave scenario only. This
dependence reflects similar behaviour to what is usually referred to as the Uemura plot [20] of
Tc versus σ (the muon spin-relaxation rate which is believed to be proportional to 1/λ2(0), since
it is proportional to nS/m∗, with nS andm∗ being respectively the superfluid carrier density and
the effective electron mass). What the calculated curves show is a kind of a boomerang effect.
In fact, the shape of the curves is very similar to the curve plotted by Markiewicz [14] for
DOS(εF ) against the square of the plasma frequency, which is the expected behaviour near the
VHS. The Uemura plot constitutes substantial and intriguing evidence that Tc and 1/λ2

α(0) rise
and fall together as we dope from below to above the optimal concentration of holes δn = 0.
Since our calculations resemble this behaviour, we are in the position of being able to identify
a mechanism which is responsible for this universally observed Tc versus 1/λ2

α(0) relationship.
Evidently, to the extent that our model captures the essential physics of the superconducting
YBCO, it is due to the presence of a Van Hove-like bifurcated saddle point in the electronic
structure featured by the eight-band model.

5.6. Doping dependence of the superfluid density

In figure 14, we present the doping dependence of the superfluid density for the non-local d-
wave scenario and five different levels of doping, as a function of the relative temperature.
In figure 15, for comparison, we show the measurements after Hardy et al [21], for the
whole temperature range up to Tc, for three different doping levels, producing evidence that
λ2
a (b)(0)/λ

2
a (b)(T ) is an almost universal function of T/Tc in the sense that the data for different
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Cu dx2−y2 –Cu dx2−y2 scenario along both the a-direction (circles) and b-direction (squares). Here
the full symbols correspond to the overdoped compounds and the open symbols to the underdoped
compounds. The connecting lines serve as a guide for the eyes.

levels of doping fall more or less on the same curve for the whole temperature range up to Tc.
Note that the respective axes for the calculated curves run only from 0 to 0.12 and from 0.86
to 1.00. In contrast, the experimental data run over 0.0 to 1.00 in both cases. Unfortunately, to
calculate for the whole temperature range would have been quite tricky, especially as regards
performing the BZ integration in the full BZ without having the full FS which matters a lot
for λa (b)(0).

There are a couple of points that we would like to make regarding the calculated curves.
First is that we do not see much variation as a function of doping, in agreement with the
experiment. Our results, displayed in figure 14, for the intra-layer Cu dx2−y2 –Cu dx2−y2

scenario, are clearly consistent with these facts: a 21% change in Tc from the optimal to
an overdoped compound (Tc = 73 K), corresponding to a relative change in the band filling
per layer of 0.03, results in an 8% change in the superfluid density tensor λ2

α(0)/λ
2
α(T ) for

both a- and b-directions. For the underdoped compounds a change of 15% in Tc, equivalent
to a relative change in the band filling per layer of about −0.04, leads to a 3% change in the
superfluid density tensor λ2

α(0)/λ
2
α(T ) for the a-direction and a 2% change for the b-direction

(see table 1). This again indicates that changing the band filling, without altering either the
electron–electron interaction constant or the energy bands of the normal states, is capable of
accounting for the striking variations of many superconducting properties.

The calculated superfluid density curves reflect the VHS in that the optimally doped curve
lies in the middle, and those of the other doping levels on the respective sides of it. Moreover, as
in the case of the optimally doped compound, the calculated λ(0)s do not show much variation,
both between a- and b-directions, and as a function of doping. Different observations can be
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Figure 14. The calculated superfluid density, (λa (b)(0)/λa (b)(T ))2, as a function of T/Tc , for a-
and b-axes and five different band fillings for the CuO2 bilayer of YBa2Cu3O7, and the intra-layer
nearest-neighbour Cu dx2−y2 –Cu dx2−y2 scenario. The calculated curves correspond respectively
to two overdoped compounds with Tc = 73 K and 86 K, the optimally doped compound with
Tc = 92 K, and two underdoped compounds with Tc = 78 K and 89 K. The dotted and chain curves
drawn through the calculated points correspond to the overdoped compound with Tc = 73 K and the
underdoped compound with Tc = 78 K. All of the calculated results are enclosed in between these
two outermost curves, with a very small variation in the slopes, and also reflecting the Van Hove
singularity in the calculated electronic structure. The results for the optimal doping fall exactly
in the middle of the region enclosed by the two outermost curves. The results for the underdoped
compounds lie to the right of the optimal doping results and the ones for the overdoped compounds
to the left.

Table 1. The change of the superfluid density slope, defined as S = dx/dt , with x =
(λa (b)(0)/λa (b)(T ))2 and t = T/Tc , as a function of doping. Also the doping dependences of
λa(0) and λb(0) are presented. The calculated values correspond to two underdoped compounds
with Tc = 78 K and 89 K, the optimally doped compound with Tc = 92 K, and two overdoped
compounds with Tc = 73 K and 86 K.

Tc (K) Compound a-axis b-axis λa(0) (Å) λb(0) (Å)

78 Underdoped −1.014 −0.995 1822 1790

89 Underdoped −0.967 −0.946 1847 1810

92 Optimal −0.936 −0.918 1883 1839

86 Overdoped −0.926 −0.913 1908 1862

73 Overdoped −0.906 −0.898 1931 1887

made looking at table 2, where the respective experimental quantities are quoted. This again
is due to the lack of the full FS in the eight-band model used in the calculations. We believe
that including the chain-related Fermi-surface sheet would not only increase the anisotropy
between λa(0) and λb(0), but could also reverse their ascending order to the descending one,
when moving from underdoped to overdoped compounds, in agreement with experiment [22].
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Figure 15. The superfluid density, (λa (c)(0)/λa (c)(T ))2, as a function of T/Tc , from Hardy
et al [21] for YBa2Cu3Ox with x = 6.6 (circles, 6.95 (squares), and 6.99 (triangles), showing near
universal behaviour versus doping.

Table 2. The experimental values of λa(0) and λb(0) for three different doping levels as reported in
the review article by Hardy et al [21]. The asterisk marking the values for the overdoped compound
means that these values were obtained by extrapolation from the results for the optimally doped
compound, and are not an outcome of a measurement.

Tc (K) Compound λa(0) (Å) λb(0) (Å)

89.0 Overdoped 1600∗ 800∗

93.2 Optimal 1600 1030

59.0 Underdoped 2100 1600

5.7. Doping dependence of the superconducting gap

In figure 16 we show the calculated doping dependence of the superconducting gap for the
non-local d-wave scenario [6]. Like in the case of the study of Tc versus doping, different levels
of doping have been accomplished by changing the chemical potential in the BdG equations,
but neither the tight-binding parameters of the eight-band model nor the coupling constant
K have been updated during the self-consistency cycles. They have been kept at the values
derived for the optimally doped YBCO compound with Tc = 92 K.

Surprisingly our results, both for the odd and even sheets of the FS, agree qualitatively with
the lower of the two energy scales identified in a recent report by Deutscher [23]. Deutscher
arrived at these two energy scales in the superconducting state,�p and�c, by comparing gap
energies, measured by different experimental techniques well below Tc, for various copper
oxide superconductors. �p, determined either by ARPES or tunnelling spectroscopy, is
associated with the single-particle excitation energy, namely the energy per particle required
to split the paired charge carriers that are required for superconductivity. �c, determined
mainly by Andreev reflection experiments, is associated with the coherence energy range of
the superconducting state, i.e., the macroscopic quantum condensate of the paired charges.
In the overdoped regime the two energy scales converge to approximately the same value, as
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Figure 16. The calculated superconducting gap for both even (solid curve with plus signs) and
odd (dashed curve with crosses) sheets of the Fermi surface of YBCO, as derived from the eight-
band model with the intra-layer nearest-neighbour Cu dx2−y2 –Cu dx2−y2 scenario, in comparison
with experimental data reported by Deutscher (see reference [18]). The energy gap values �
are normalized to kTc,M , where M refers to the optimal Tc . The normalized gap is plotted as a
function of doping normalized to the optimal doping level. Here circles refer to YBa2Cu3O7−δ ,
squares to Bi2Sr2CaCu2O8+δ , triangles to La2−xSrxCuO4, and the star to HgBa2CaCu2O6+δ . The
open symbols come from the ARPES and tunnelling experiments, while the full symbols refer to
the Andreev, penetration depth, and Raman experiments. Additionally to the experimental values
collected by Deutscher, in this figure we have also given the value corresponding to the ARPES
experiment by Schabel et al [15] (see the open circle within the coherence energy scale at the
optimal doping).

would be the case for a BCS superconductor, where pairs form and condense simultaneously.
Also, since the gap for the optimally doped YBCO, as measured by Schabel et al [15], lies
in the coherence energy range, one can conclude that the optimally doped YBCO is in the
BCS condensation regime. In the underdoped regime, the two energy scales diverge, with�p
becoming much larger than �c, and increasing with doping, δn, whilst �c decreases like Tc
with δn. It implies that in the underdoped region the superfluid condensation is not in the
BCS limit, because�p diverges. The underdoped region is where a pseudogap in the electron
excitation spectrum is observed well above Tc [25]. Unfortunately, our methodology does
not include any mechanism for describing the pseudogap. Thus, we have concluded that the
coherence energy range �c, measured by Andreev reflection, penetration depth, and Raman
experiments, is a BCS-like, weak-coupling, superconducting d-wave energy gap. Since with
regard to the other energy scale �p our theory has nothing to contribute, we suggest that it is
not a superconducting feature of the spectra. This conclusion seems to be supported by recent
findings of the intrinsic tunnelling spectroscopy by Krasnov et al [24]. These authors have
been able to distinguish between the two coexisting gaps in the tunnelling DOS by observing
strikingly different magnetic field (H ) and temperature (T ) dependencies for the two gaps:
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(i) the superconducting gap which closes both as H goes to Hc2(T ) and as T goes to Tc and
(ii) the non-superconducting (c-axis) pseudogap, which does not change either with H or T .
This speaks against the pseudogap having any relation to superconductivity and eliminates the
precursor superconductivity in relation to the pseudogap.

6. Conclusions

We have presented some evidence that the semiphenomenological approach for calculating
quasiparticles for high-Tc superconductors works very well for YBCO. Also, our studies
indicate that whatever the mechanism, it seems to operate between electrons with opposite spins
and momenta on nearest-neighbour Cu sites in dx2−y2 orbitals. It is important to remember that
d-wave symmetry of the gap was not assumed here in any way. It was a result of a combined
effect of the underlying electronic structure of the eight-band model and the choice of the
pairing interaction represented here by Kdd(a) = 0.68 eV. Our results seem to indicate that
YBCO behaves like a BCS weak-coupling superconductor. All the strong-coupling effects,
responsible for making the parent compounds of the high-Tc cuprates bad metals, appear to
have gone to creating the exotic pairing, while all the other properties seem to be very much
like in the conventional superconductors. Thus, the high-Tc superconductivity appears to be
fairly conventional except for the high critical temperature and d-wave pairing.
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